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J .  Phys. A: Math. Gen. 24 (1991) 525-547. Printed in the UK 

Discrete and continuous graded contractions of Lie algebras 
and superalgebras 

M de Montigny and J Patera 
Centre de recherches mathhatiques, Universitt de MonlrCal, CP 6128-A, Monlreal 
(QuChec) H3C 357, Canada 

Received 17 September 1990 

Abstract. Grading preserving contractions of Lie algebras and superalgebras of any 
twe over the complex number field are defined and studied. Such contractions fall 
naturally into two classes: lhe Wigner-LGnii-like continuous contractions and new 
discrete contradions. A general method is described lor any Abelian grading semi- 
group and any Lie algebra or superalgebra admitting such a grading. All conlractioris 
preserving Zz-, Z3-, and Zz x Zz-gradings are found. Examples of these gradings and 
contractions for the simple Lie algebra A z .  affine Kac-Moody algebra AY) and &he 
simple superalgebra osp(2,I) are shown. 

1. Introduction 

The interest of physicists in contracting Lie algebras is well demonstrated in the litera- 
ture [l, and references therein]. It stems from the need to relate, in a meaningful way, 
the symmetry Lie groups (Lie algebras) of different physical systems with one another 
and thus to bring the corresponding phenomena to a common understanding. The 
simplest of such relations is that associated with symmetry breaking where two Lie 
algebras are related by a homomorphism (inclusion). 

The Wigner-Inonu contraction of a Lie algebra L to L‘ is a n  example of a relation 
which is not, in general, a homomorphism. (For other non-homomorphic relations see, 
for example, 12-41,) Graded contractions as defined in this article allow many more 
contraction parameters to  be introduced and consequently a much larger variety of 
contraction ‘limits’ to  be studied. 

The defining feature of our method is the preservation of a chosen grading during 
the contraction. A grading of a Lie algebra L implies the subspace decomposition 
(2.1) and the commutation relations (2.2) described later. Two gradings of L are 
equivalent if their grading decompositions differ by a transformation from the group of 
antomorphisms of L.  During a general grading-preserving contraction all the elements 
of a grading subspace L j  are treated the same way: only the commutation relations 
between whole subspaces are modified. I t  turns out that such an approach offers an 
efficient tool for computing in comparison with the general theory of deformations of 
Lie algebras (cf [5, G and references therein]). In particular, one needs neither to fix 
the dimension of the algebra (it can be finite or infinite), nor to make a distinction 
between a Lie algebra and superalgebra. Moreover, the preservation of the grading 
can also be made into a natural guiding principle in defining and studying contractions 
of representations [ i ]. 
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526 M d e  Montigny and J Palern 

The purpose of this article is t o  generalize the traditional Wigner-Inonu contrac- 

(1) The Zz-grading is replaced by any Abelian semigroup as the grading semigroup. 
(2) In addition to the continuous limits, we define and also find discrete contrac- 

tions in all but the simplest cases. 
(3) For any fixed grading semigroup, the problem is solved simultaneously for Lie 

algebras and superalgebras of any type and dimension provided they admit the chosen 
grading. 

The precise relation between graded contractions of a general Lie algebra and its 
deformations has yet to be established. However, it appears that any deformation 
of a simple Lie algebra over the complex number field preserves some grading of the 
algebra, hence i t  is a graded contraction. 

An investigation of all possible (graded) contractions of a given Lie algebra and 
superalgebra hinges on the knowledge of all its gradings. Even for Lie algebras of 
modest dimension like sI(3,C) this becomes a major problem [SI even if in this case 
all gradings are known [9]. Simply there are many possible graded contractions. The 
general question of the systematic study of gradings of a Lie algebra has  apparently 
been raised only recently [lo]. Nevertheless it has  already stimulated the present work, 
as well as [2, 3, 7-9, 111. 

Technically, the difference between the traditional method of contracting Lie alge- 
bras and its present generalization is best shown in the way the Jacobi identity (after 
a contraction) is enforced. The traditional parametrization automatically guarantees 
the validity of the Jacobi identities. In our case the identities impose a system of 
quadratic relations on the contraction parameters. The number of contraction para- 
meters in the traditional approach cannot exceed the order of the grading group, i n  
our case i t  grows quadratically with the or.ier. 

The discrete contractions conceptually differ from the traditional continuous con- 
tractions [l] or, more generally, deformations of Lie algebras [5, 61. In spite of that  
they arise here ‘naturally’, being (non-trivial) solutions of the same system of equa- 
tions (2.17) which gives all the graded continuous Contractions as a limit of its rather 
trivial solutions. Furthermore, the set consisting of the discrete and continuous con- 
tractions is closed under the contraction composition law (2.8). Moreover, in certain 
rather typical cases an outcome of a discrete contraction may be a parameter de- 
pendent family of Lie algebras. For certain limit values of the parameter one gets 
a continuous contraction (cf (4.19) as p Y l ) ,  i.e. there is a continuum of discrete 
contractions which is ‘infinitesimally’ close to a continuous contraction. 

All Lie algebras and superalgebras are taken here over the complex number field. 
Analogous problems for the real field will be considered elsewhere. In general, it 
is straightforward to decide whether a given grading of a complex algebra is also a 
grading of its chosen real form and, consequently, whether the graded contractions 
also apply to that real case. 

The article is organized as follows. In section 2 the general method is described. 
In the subsequent three sections the method is applied to an arbitrary Lie algebra or 
superalgebra which admits Z2-, Z3- and Zz x Z,-gradings. The contractions for the 
generic case are found; the non-generic cases are obtained by further restriction of the 
generic ones. The last three sections contain examples of Zz-, Z3- and Zz x Zz-graded 
contractions of the simple Lie algebra s1(3,C), the affine Kac-Moody algebra A!’),  
simple superalgebra osp(2, l )  and the simple Lie algebra sl(2,C).  The purpose of the 

tions [l] of Lie algebras in the following direct,ions: 
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sI(2,C) example in sections 6-8 is to illustrate the discrete contractions ( in  section 7) 
on the simplest case possible. 

More information concerning superalgebras and  affine Kac-Moody algebras is 
found for example in [12-141. 

2. Graded contractions of Lie a l g e b r a s  and superalgebras 

In this section we describe our method in general. It allows us to find the  contractions 
which preserve a chosen fixed grading of a Lie algebra or superalgebra. In fact a t  
no point in this section do  we need to distinguish between the two types of algebras. 
There is no restriction as to the dimension of the algebra, it may he finite or infinite. 
We require no features other than the presence of the  chosen grading. 

mutators, only occasionally underlining the fact t ha t  the superalgebras with the  same 
type of grading are being considered as well. Similarly w e  speak about grading group 
rather than semigroup. 

Suppose L is a Lie algebra graded by an Abelian finite group G. That means we 
have the grading decomposition 

For siiiip:iciiy of preseuiai;on we con~~nua i iy  speak &out Lie aigebras and COfi,. 

L = $ L ~  
j € C  

of L into the  direct sum of gradiiig subspaces L j ,  and the  commutators of the subspaces 
satisfy thc rclations 

lLj?L,l C Lj+k j , k > j  + k E G. (2.2) 

Here we are using the additive notat,ion for the multiplication in G.  Let us  emphasize 
tha t  [ L j ,  L k ]  is a linear space generated by commuting every element of L j  with every 
element of L,. Therefore it coincides with the one denoted by [L,, L j ] .  Similarly, in 
the case of superalgebras, i t  is immaterial whether such a space is obtained as a result, 
of commutation or anticommutation. 

In general we shall not be interested in the details of the  structure of L (except 
for some examples), but we will need to specify whether a commutator [L,,L,] is 
identically zero or not. This  information is conveniently, for our purposes, provided 
by the symmetric matrix K = (tqj): 

0 i f [ L j , L , ] = O  
K j ,  = { 1 i f [ L j , L , ] # O .  

Hence without loss of generality we can write 

[L; .Lk!  K;kL;+k (2.4) 

and speak of a Lie algebra L with the G-graded structure K .  Whenever necessary we 
indicate the  G-graded structure of L explicitly by writing L" for L.  

Let us now define the  C-graded contractions. Suppose a G-graded Lie algebra Lr 
of (2.1) and (2.4) is given. 
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A G-graded contraction L" of L": 

(2.5) L" 1, Leer = Le 

is the Lie algebra L' with the grading decomposition (2.1) isomorphic to that of L" 
and with the contracted commutators [ ,  l e ,  

[ L j , L k j s  = - j j k [ L j , L k ;  E y .  j k  s. j k  L .  j t k  - - - L j k " j t k  r (2.6) 

given by the commutators in L" and the contraction parameters 
The contraction is determined by the matrices K and 7 or, equivalently, by E .  The  

matrix 7 coincides with E in the case of L" with all matrix elements of K equal to  1. 
We say then that K is of generic type and write K = (1). 

Note that the matrices x ,  7 and e are by definition symmetric with respect te  
transposition 

E C. 

(2.7) T E = E .  T 
K = K  7 = 7  

In order that  Le is a Lie algebra, the matrix E of the contraction parameters 
(contraction matriz or just  contraction for short) must not violate the Jacobi identity. 
A large part of the rest of the article is devoted to  the analysis of this requirement. 

The relations (2.6) can be used to  motivate the introduction of an uncommon 
matrix composition rule for K ,  7 and E .  Namely, 

E = K . 7 = 7 . n  (2 .8)  

defined in terms of matrix elements as 

& j k  = Y j k ' j k  (2.9) 

with no summations implied. 
The matrix E defined in (2.8) and (2.9) gives a possible contraction of L.  Most 

of the values of its non-zero matrix elements can often be restricted to, say, 1 by 
renormalization (see (2.10) below) of the grading subspaces of the contracted alge- 
bra, without changing its isomorphy class. Whether or not such a renormalization is 
possible needs t o  be investigated for each case separately. 

A special case of the composition rule (2.8) arises naturally when the commutation 
relation (2.4) is modified by renormalization of the bases of the subspaces by arbitrary 
non-zero constants, 

L j  - a j L j  j E G ,  0 5 ai E C .  (2.10) 

Then we have 

(2 . i i )  

where 

E = - f e n  (2.12) 
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with 7 given by 

(2.13) 

Hence such a y  determines a contraction. 

Abeiian, i.e. every c jk  = 0. -We write then E = (0). 

not it can be achieved by a continuous change 

We say that a contraction is lriuial if either L' is isomorphic to L e ,  or if L' is 

A non-trivial contraction is either continuous or discrete according t o  whether or 

1 ---) -yjk for all j, k E G, -yj,k E C (2.14) 

W I b I I U U h  CY(;, vrvrdlrlrg bile JaCU", ,ue,,L,bJ Wlli , ,  LllC ,,,I,er,,,cu,aw YdlUt-S.  JLllCC uurlrlg 

a continuous change (2.14) the Jacobi identity must not be affected, its validity has 
to be independent of the values of r i p .  That happens precisely if each rjk is of the 
form (2.13), including the limit values of 0. 

The task of determining the non-trivial contractions of L' of L" amounts to de- 
termining the matrices E which do not violate the Jacobi identities. Since, in general, 
there are mazy &!%rent G-grzded structures r possih!:, the problem shou!d be so!ued 
for each of them. Some of those cases will be simpler than others depending on the 
number of zeros in n, the most complicated being the generic case of n with no zeros 
a t  all. The latter case corresponds to E = 7. Suppose we have found all non-trivial 7 
in the generic case. Then using them in (2.8) we find the desired E for any non-generic 
n,  although different 7 do not necessarily yield different E and the actual ranges of 
~on-zero matrix &mznts of e need_ t,o he investiga_?ed_ separately. 

Let us now describe a method of finding the matrices 7 for the generic case, i.e. 
c = 7. The Jacobi identities by definition must hold for the Lie algebra before a 
contraction. Without loss of generality i t  suffices for our purpose to require 

___: tL^__I  ..:-,-.!-- LL. T - - - L :  :.I-..&!, ..... : I L  I L .  : , ! L .  _ _ ^ I  o:-.. ,..-:-- 

(2.15) 

for all j ,  k, m E G. After a contraction, one has also, in addition to (2.15), the Jacobi 
identity for LT,  

YjY,kYm,j+k[Lm,[Lj,LXl] + Y k m Y j , l . + n i [ L j r [ L ~ , L m l l  +YmjYk,m+j  [Lk,[Lm2Ljl] = O -  

(2.16) 

The equalities (2.15) and (2.16) can hold simultaneously i n  this generic case only if 
one has 

YjX?m,j+X = YkmYj,k+m = YmjYk,m+j' (2.17) 

One observes that, haviug instead of (2.15) and (2.16), the analogous super-Jacobi 
identities, would result in the same equation (2.17). 

Non-trivial solutions of (2.17) determine the contractions in the generic case. We 
solve (2.17) subsequently for specific grading groups G. Note that (2.16) is automat- 
ically satisfied when the - / jk  are given by (2.13) (including the limit values 0 in the 
numerators). 
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It is clear that  the composition of two solutions of (2.17), say y1 and 72, according 
to (2.8) gives 

7 =7l - 7 2  (2.18) 

which also is a solution of (2.17), hence a contraction. 
If we had considered a Lie algebra with non-generic grading structure, some of 

the terms in (2.15) and, consequently, also in (2.16), would not be present. In such 
a case the corresponding equalities would be absent from the system of equations 
(2.17). Therefore the G-graded contractions of Lie algebras with non-generic grading 
structures are determined by a subset of equations (2.17). 

For the non-generic grading structures n one may use the solutions 7 for the 
generic case and the composition rule of (2.8) t o  generate the matrices E of many 
contractions Le of L". In some cases (cf. (5.9)) all contractions'are generated in this 
way. In all cases such a composition yields a contraction. For any fixed n,  the set of 
contraction matrices is closed under the  operation up to (2.10). Numerous examples 
of this are shown subsequently. 

I t  is useful to inbroduce the following convention: whenever coo # 0, we renormalize 
the basis of the grading susbspace Lo so tha t  = 1. 

3. C o n t r a c t i o n s  of Z,-graded Lie algebras and superalgebras 

Let us consider here the cyclic group Z2 of two elements as the grading group. 
Z2-graded Lie algebra decomposes as a linear space 

A 

L = Lo @ L ,  (3 .1)  

with the commutation relation in the generic case 

0 # [ L j ,  L,] G L j + ,  j ,  k, j + k (mod 2) 

The general equations (2.17) specialize in this case to 

70OYll = YOlYll 
2 

YOOYOl = 701. 

Besides the two trivial solutions of (3 .3):  

there are three non-trivial ones: 

Only 7''' is a discrete contraction. Here the dot denotes the matrix element 0 
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The  composition rule for the contraction matrices reads as follows 

Non-trivial contractions result from composing 

rA 0 yA = yA for A = I, 11, I11 
yI . rllI - 111 -7 

but no  new contractions emerge in this way. 
The  graded adjoint action of L on itself, 

(3.7) 

adj L ,  = [ L j , L k ]  (3.8) 

can also be  described as follows: 

After a contraction one has the contracted grading action either as 

Lk)T = Y j k  ad, Lk = ?'jk[L,> LkI 

or, equivalently as 

(3.9) 

(3.10) 

Here ylo ad, Lo and yol ad, L ,  are t,he same due to (2.7) and (3.8). 

by (3.5): 

I. 0 # [Lo, G Lo 0 # [LO>LlIc c L ,  [ L , ,  L11, = 0 (3.11) 
11. (3.12) 
111. 0 # [Lo, L,lc c Lo [L,!Ll l ,  = [ L l J I l ,  = 0. (3.13) 

In the generic case, IC = (l), we have the three ?,*-graded contractions of Lr given 

[Lo, Lo]* = [Lo, Lll. = 0 0 # [Ll I & I .  c Lo 

Next consider the non-generic cases. Let 



532 

Note that such a grading s h c t u r e  is not a result of a contraction of the generic one. 
In this case the set (2.17) imposes no restriction on 7. According to (2.9), we find the 
contractions given by 

M de Moiilign.y a n d  J Palera 

Thus there are now two non-trivial continuous contractions: 

[Lo, Lois = [L, ,  t l j c  = o o # [Lo, Llje c L ,  (3.15) 

and the one given in (3.12). 

It remains to take up n = (1  ;> with the contractions determined by 

e = y  I .n=y'l'.tCc= (1  :) 
o = y  I1  O K = ( :  ;). (3.16) 

Hence there are the two non-trivial contractions given by (3.12) and (3.13). 

4. Contractions of Zs-graded Lie algebras and superalgebras 

In this section the graded group is Z,, the cyclic group of three elements. We consider 
any Lie algebra or superalgehra L which admits a ?&grading. Hence we have 

L = L, @ L ]  @ L, (4.1) 

and in the generic case, K = ( I ) ,  also 

o # [ L j , & l C L j + k  j , k , j + k ( m o d 3 )  

Then (2.17) can be rewritten as 

(4.2) 
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Occasionally it is more convenient to rewrite (4.3) in the following equivalent form. 

(4.3') 

In particular, i t  is easier to decide whether a contraction is discrete from (4.3') rather 
than from (4.3). 

In order to find non-trivial solutions of (4.3), let us proceed as follows. 

4.1. 

First consider the solution with yO0 = 1. (If one would have 0 # yoo # 1, the 
renormalization (2.10) of Lo would allow one to change yoo to 1.) Then from (4.3a) 
we have 

yo, and yo2 = 1 or 0. 

Hence we need to consider one-by-one the three cases 

( 4  

(b) 

Yo1 = Yo2 = 1 

yol = -yw2 = 0 
fc) yo1 = 1, 702 = 0 and yol = O,yO, = 1.  

Case (a). Using T~~ = yol = yO2 = 1 in (4.3), we get 

Y11Y2m = Y!mYl,m+l 

Y22Y1m = Y2mYz,m+z 

712 = 72mYl,m+2 = YlmYZ,m+l nz = 0, 

These equations simplify to just one: 

712 = 7lly22. 

Hence we get the non-trivial solutions 

(4.4) 

(4.5) 

Case ( b ) .  Using yoo = l,y,, = yO2 = 0 in (4.3),  we get after obvious simplificatioiis 

o = y  l lY2Z 712  =0.  (4.7) 
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Hence the non-trivial solutions are 

Interchanging yo, and roz, we get as well 

1 . 1  

1 "  
YVIll = ( .  . . )  

(4.9) 

(4.10) 

4.2.  
Next we consider the solutions with yoo = 0. From (4.3a) we have yo, = yo2 = 0. 
Consequently (4.3) becomes 

y;1y*2 = 0 Y12 = a E IC. (4.11) 

However, a # 0 can be transformed to 1 by (2.10). We get 

In many important special cases tlie subspaces L ,  and 
be relabelled as L-, and L-z.  Then the pairs of solution 

are isomorl 

(4.12) 

c and can 

(4.13) 

(4.14) 
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are closed under the composition rule (2.8). Here (0) is the trivial solution. The 
solutions yl, yll,ylll,ylxyx'll are continuous while yIVrVII1 are discrete. 

Occasionally it is convenient to write the adjoint action of a Z3-graded Lie algebra 
L in a way analogous to (3.10): 

(4.15) 

Let us now consider an example of Lie algebras L" with non-generic n, say 

(4.16) 

AI1 its contractions are found as 

c = y  A o n  f o r A = I ,  ..., XIII. (4.17) 

Thus one finds the following continuous contractions 

and the discrete ones 

(1 1 ;) ( :  : 1) [; 1 p) 0 # p # 1 .  (4.19) 
1 ' .  

The parameter p gives a continuum of contracted Lie algebras which, for different 
values of p ,  are not isomorphic. In this case the equalities involving E,, are absent 
from (4.3). As a result the system is solved with arbitrary col and c02. Only one of the 
two can be transformed to 1 by renormalization of La ,  unless of course E ~ ,  = .zOZ # 0 ,  
in which case one gets one of the continuous contractions (4.18). 

Another example of a non-generic E,-grading pertinent t o  contractions of si(2, U) 
considered in section 7, is given by 

. ... -, 

n =  
1 1 .  

In this case the continuous contractions are given by 

(4.20) 

and the discrete ones by 

Here the last matrix is also obtained from K oy', followed by the investigation of the 
admissible range of values of non-zero matrix elements as in the previous example. 
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5.  Contrac t ions  of Z2 x Zz-graded Lie a lgebras  and supera lgebras  

M de Mosiigiiy and J Palern 

The grading group in this section is Z, x Zz the tensor product of two cyclic groups of 
order 2. We consider any Lie algebra or superalgebra which admits a Zz x Zz grading. 

We have 

L = Loo @Lo, fB L,, L,, (5.1) 

and also 

[LPVLTS1 G Lp+,,q+s (5.2) 

where the subscripts have two components, each read modulo 2. As before we first 
consider the generic case where none of the commutators (5.2) is identically zero. 

nent subscript,s: 

*.. ..-A"- 1.. ..;-.-1:c.. ^.." ..-&-&:,..." ... ̂  :"&-̂ ,I..".. I..+,..- ".....k-l- PA- ,I." + ... ̂ " ---- 
111 V L U C L  Y V  """p"Ly Y " L  L L V U * Y l " l l U  w c  l , ~ ~ , W " " L C  1"bY"'-uy,u"W," L", bllri YW" LV,Up? 

a = 0 0  b = O 1  c = l O  d =  11. ( 5 . 3 )  

Consequently we have 

a + a = a  a + b = b  a + c = c  a + d = d  

20 = 26 = 2c= 2d z a 

b + c = d  b + d = c  c + d = b  

(5.4) 

The matrices K ,  7 and E now have the form 

E00,OO E00,01 E00,lO E 0 0 , t l  Em €ab € a d  

E10,OO E10,01 E10,lO E 1 0 , l l  

E11.00 &11,01 E11,lO E 1 1 , l l  &do &db &dc &dd '  

The equations (2.17) can now be rewritten as 

Y a A Y m  - 7 m )  = 0 

Y,AY.. - Y m )  = 0 

Y,,(Y., - Y J  = Ysy(Yaz -Yay) = 0 

YsrYoy = Yzy7m 

7,zYyz = 7 y y Y x  

(5.5) 

where a is as in (5.4) and distinct letters 2, y, L denote distinct values from the set 
b ,c ,d  of (5.4). Rather than trying to solve (5.6) directly, one may first observe that  
the system (5.6) is solved by tensor products of Z2-solutions (for the generic case). We 
have found three non-trivial Z,-solutions: 7',7'l,y111 of ( 3 . 5 ) .  Denoting by 7' the 
first of the trivial solutions of (3.4), we can write down immediately the 16 following 
solutions of (5.6): 

yAB = 7* @ yB A ,  B E {O, I , I I ,  H I }  
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Table 1. Solutions of (5.6) providing Zz x Zz-graded contractions for the generic 
case as tensor products of Zz-graded contractions given by T O ,  yl, 7" and 7'". The 
subscript d denotes a discrete contraction; all other contractions are continuous. 

where only yo @ro is trivial. The solutions are shown in table 1. However, the system 
(5.6) also admits other solutions. By a direct computation one finds the contraction 
matrices given in table 2. Altogether there are 39 non-trivial solutions of (5.6). 

The graded commutation relation in the matrix representation analogous to (3.9) 
becomes 

7,. ybb Ycc Ydd add 

Yba Yob Ydc add 

7,. Ydb add Yac Y b d  adb 

Ydn add ycb ybc Yod 

The contractions for Lie algebras with non-generic grading structure, i.e. 

IE # YO @ 7 0  = (1) 

are again found using (2.8). For example, let 

1 1 1  

1 1 1 1  
I E =  i; 1 1 1 1  9 

then combining it with llre entries in table 1 ,  we get the following non-trivial 
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Table 2. Solutions of (5.6) providing Zz x Zz-graded contractions for the generic 
case which cannot be given as tensor products of two Zz-graded contraction matrice. 
The subsaipl d indicates a discrete contraction. 

contraction matrices: 

( j  1 ;) 
. . . .  

and 

YO @ YII -?@-?I YII @ 7 0  YII @ YI 
ylL @ y l l l  7111 @ YII @ 7" 

(5.11) 

as they appear in table 1. Moreover, there are 21 others obtained by the composition 
of (5.9) with the matrices of table 2. Altoget,her there are 35 distinct non-trivial 
contractions of (5.9). Some of those solutions depend on parameters. Among them 
one finds, for example, 

which coincides with one of (5.10) for p =  q = 0 
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In section 8 we will encounter yet another non-generic Z, x Z,-grading structure. 
Namely, 

K.= ( I  1 1 i )  
1 1 '  

(5.12) 

Its  composition (2.8) with those in tables 1 and 2 yield the following non-trivial con- 
tractions: 

. .  . .  

. .  1 .  . .  ' 1 1 '  
(5.13) 

. . . .  

6. Examples of contractions with Z2-grading 

In this section we consider examples of specific algebras which admit Z,-gradings and 
the related contractions. 

Example  I. Consider the simple Lie algebra A ,  as represented by the matrices 

x E @ 3 X 3  t r  x = 0. (6.1) 

There are two non-equivalent Z,-gradings of A , .  Both of them lead to the decompo- 
sition (3.1). However, they differ in what are the subspaces L, and L, .  In one of the 
cases 

L ,  = {X [ X  = -XT} E A ,  

L,  = {X I X = XT}. 

Thus dimL, = 3 and dim L, = 5 .  Explicitly L ,  and L, can be taken as the matrices 

U d e  f 
L o = ( - .  - b  -c . !) . L l = ( e  f h y - d - y  h ) (6 .3)  

where a , b , c , d , e ,  f , g ,  h E @. 
The  second Z,-grading of A ,  can be given as 

- a - d  
(6.4) 
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where a ,  b ,  . . . , h E C, with dim Lo = dim L ,  = 4 .  Clearly the two gradings cannot 
be equivalent (under the action of the group of automorphisms of L)  because the 
dimensions of their grading subspaces differ. 

Bot,h Z2-gradings of A, have the generic grading structure, K = ( l ) ,  since none of 
the commutators (3.2) is identically zero. Consequently the solntions (3.5) apply t o  
either of them, the contracted commutators being those of (3.11)-(3.13). Using the 
format of (3.10) we write the contractions in the following form: 

M de  Montigny and J Patera 

Let us now use the two Z,-gradings of A, in (6.5)-(6.7). First consider (6.3). Since 
in this case [Z,, Lo] = L o ,  [L , ,Z , ]  = Z,, and [Lo,  L,]  = Z , ,  the derived algebraDZI is 
isomorphic t o  L' in the case (6.5), DL' = Lo for (6.6) and (6.7). Moreover, (6.5) has 
a non-trivial Levy decomposition into o(3) and a livedimensional (5D) Abelian ideal, 
(6.6) is indecomposable nilpot,ent with 3D centre (degree 2 nilpotency is a consequence 
of Z,-grading), and (6.7) is decomposable: o(3) and 5D Abelian algebra commuting 
with o(3 ) .  

In the case (6.4) we have Lo Y g1(2,C), Lb Y s1(2,C), 

Hence for (6.5), DL' is not isomorphic to L' because dimDL' = 7; equation (6.6) 
gives dimDL' = 4; for (6.7) we have DZ'r s I (2 ,C) .  Furthermore, (6.5) decomposes 
into (7+1)D subalgebras, (6.6) is indecomposable nilpotent with 4D centre, and (6.7) 
is decomposable (3 + 1 + . . . + l), containing sI(2, C). 

Ezample 2. Consider the affine Kac-Moody algebra AV) spanned by the generators 

and equipped with the modified matrix commutation rules, the modification occurring 
only in 

t k + l  [(: :)I=( . - tk+J ) + 4 + j , o  I (6.10) 

when k + j = 0, 
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A i%,-grading of AY) with generic grading structure, K = (1) is given by the 
following generators of grading subspaces: 

Here Lo is isomorphic to  the whole algebra AY), and L,  is isomorphic to  the adjoint 
representation ad AI’) (centre mapped to  zero). 

The contractions (6.5)-(6.7) give respectively A Y )  K ad A Y ) ,  infinite-dimensional 
nilpotent Lie algebra (degree 2 nilpot,ency), and a decomposable algebra consisting of 
A Y )  and an infinit+dimensional Abelian Lie algebra commuting with A$’). 

The algebra A Y )  admits another Z2-grading generated as follows: 

L 1 = ( ( :  ‘“>(ii :)} - c o < k < c a  

(6.12) 

with the grading structure 

In section 3 we found the two non-trivial contractions in this case, namely (3.12) and 
(3.15). The first is nilpotent, the second one is solvable. 

For completeness let us also point ou t  the following Z,-grading of Ai’) which is 
clearly not equivalent to any other: 

Ezample 9. Superalgebras carry by definition a natural iZ2-grading. Let us consider 
the superalgebra of 3 x 3 supermatrica of the following form. The even part Lo is 
the same as in (6.4), and the odd part L ,  is isomorphic to that in (6.4) except that ,  
being a superalgebra, one h a s  now to  equip i t  with supercommutation rules: 

[Lo, Lo1 = Lk c Lo [Lo, L11= Li  { L i ,  t i }  = Lo.  (6.14) 

The contractions are again described by (G.5)-(6.7), the discussion following (G.8) 
applies, remembering that { L , ,  L , ]  is an anticomnutator. 

Somewhat more amusing is the Z,-grading of this superalgebra where Lo and L ,  
both have non-trivial even and odd parts: 

Lo = { ( U  b : ) , ( :  : i)} 
. . - a - b  B A ’  

-D -C 

(6.15) 
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Here a ,  b, c, d E C are the even variables and A, E ,  C, D are the odd ones, Lo is now a 
superalgebra with 2D even part and 2D odd part; L,  is a 4D representation space of Lo 
which also decomposes (2 + 2) into even and odd subspaces. The grading is generic, 
therefore the contractions are again described by (6.5)-(6.7). 

Example 4. 
We obtain it by putting 1 = 1 in (G.12) and disregarding the centre generator #: 

M de Montigriy and J Patera 

Finally, let us consider the simple Lie algebra A, .  I t  h a s  one iZ-grading. 

The grading structure is )c = ( i  :) with two continuous contractions given by 

(3.12) and (3.15). The first of them is a 3D indecomposable nilpotent Lie algebra 
(Heisenberg algebra), the second one is an  indecomposable solvable Lie algebra of 
transformations of a 2D complex plane L, .  

7. Examples of contractions with  Z:,-grading 

Example I .  The simple Lie algebra of traceless matrices C3x3 has two non-equivalent 
Z,-gradings. The grading decompositions consist, of the subspaces Lo,  L,, L ,  gener- 
ated in the following way: 

and 

L o = { ( l  '1 -),(I 

: 1 ) , ( :  . .  : 

(7.1) 

( i . 2 )  

L, = {(: : : ) , ( :  : : )}  
' 1 '  1 . .  

It is straightforward to verify the grading property (2.2) of the commutators in  these 
cases. 
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The grading structures K are respectively given by (4.16) and by 

/ I  1 1 \  

& =  (; 1 1 )  
(7.3) 

In the first case the possible contractions are those of (4.18) and (4.19). Contractions 
of the case (7.2) are among those studied in [SI. 

Consider the last of the matrices (4.19). The contracted Lie algebra is solvable 
and indecomposable. Its non-zero commutators are 

[Lo, L11= L ,  [LOJZI = PL, P # 0 (7.4) 

the parameter p could be transformed to 1 by the normalization Lo - Lh = p-'Lo. 
However, in that case the first commutator would take the form [L;, L J  = p-'L, ,  i.e. 
the parameter would appear there. 

For the grading (7.2) the contract~ions are found using n of (7.3) composed with 
71-7x"' of section 4. 

Ezample 2. The affine algebra of Ai') has three non-equivalent Z3-gradings. 

Lo = { A ,  8 t3', I }  L ,  = { A ,  @ t3 '+ l }  L, = {Al @ t3k+2} (7.5) 

where --h? < k < 03 and A ,  denote the 3D simple Lie algebra. 

which is clearly the refined Z2-gradingof (6.12), the subspace L ,  there being split iuto 
L ,  and L,  in (7.6). The algebra Ai') admits another Z3-grading generated as follows: 

The gradings (7.5) and (7.7) are clearly generic, hence the corresponding contractions 
are 7 I y X ' ' '  of section 4. For (7.6) we have 

with the contractions given i n  (4.21) and (4.22). 
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Ezomple 3. 

M de Montigny and J Palera 

There is only one Z3-grading of osp(2, l),  up to equivalence. Namely, 

Lo = {(: . . .  : ) , ( b  . .  b -26 : ) , ( :  x " ) , ( :  Y '  : 9) 
.,={(: c : ) , (  -v : : ' v ) }  (7.9) 

which is an obvious refinement of the Z,-grading (6.15) by splitting its subspace L ,  
into two. Direct verification confirms that (7.9) is generic. Due to the finer grading, the 
possible contractions are more varied than for (6.15). They are descibed by -&yX1I' 
of section 4. 

Ezample 4. 
f which now commutes with A , ;  

The Z.,-grading of A ,  is obtained by putting 1 = 1 in (7.6) and ignoring 

L o = ( ( :  iI)> L1={(: !)> L * = ( ( ;  :j>. (7.10) 

The grading is an obvious refinement of (6.16). The grading structure is that of 
(4.20) and the discrete and continuous contractions are determined respectively by 
(4.21) and (4.22). While the continuous contractions yield the same Lie algebras as 
in the Z2-graded case, the discrete contractions (4.22) have no analogue in the Z2- 
case. They give either a decomposable 2 + 1 solvable algebra, or an indecomposable 
(0 # p # 1) one of non-uniform scaling transformations in the L,  plane. The latter 
can be described using (7.10) and (4.15) as follows 

(7.11) 
0 0  0 

ad, ad, [ E ' , H ]  + [ H ' , E ]  
pad2 0 Pado ) (i) = ( @',HI + P [ H ' , F ]  

Here we have used 

where h , e , f , h ' , e ' , f '  E @ .  

8. Examples of contractions with Z2 x Z,-gradings 

In this section we consider the same algebras as in previous examples. In order to get 
the desired grading we refine the Z2-gradings of section 6. 
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Ezomple 1. The Z,-gradings (6.3) and (6.4) can he combined into a Z, x 23,-grading 
of the simple Lie algebra A, of 3 x 3 traceless matrices. The decomposition (5.1) 
consists of the four subspaces generated as follows: 

Loo={( ' l  1 i ) }  
L l o = { ( l  1 ; ) , ( 1  1 j2)>(1 '1 ;)} 
Lo1 = { ( :  : I),(: : 1 ) )  

-1 . . . -1 

Lll  = { ( :  1 . -  : 1 ) , ( i  1 1 ) }  

This is a grading with K given in (5.9) and all contractions determined by composing 
IC with the matrices of tables 1 aud 2. Combining n,  say with 7' @ 7' of table 1, we 
get 

The pertinent equations in this case are obtained from (5.6) by removing the equations 
which contain 700. The remaining system of equations is solved with any yod # 0 and 
yob = yOc # 0. Therefore the result is a n  indecomposable solvable Lie algebra with 
the following non-zero commutators of the grading subspaces 

(8.3) 
[Low Loll, = Lo1 

[L,,,L,lI, = PLll [Lo,, L101, = L l l  P #  0. 

[ L o o ,  LIO1, = LIO 

Ezample 2. 
(6.13) into a Z, x Z2-grading of A$'):  

Similarly we can combine the Z,-gradings (6.11) and (6.12), or to refine 

with 

1 1 1 1 '  
1 1 1 1  ' 9 
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Combining that with, for example 7'' @ 7' of table 1, we get 

M d e  Montigiiy and J Patera 

. .  . 1 1  . .  

c = n * - l  I1 @ - l o =  ( I  1 1 1 1  ' '  ' ) * ( I  1 1  ' ' ) = ( I  1 1  ") (8.6) 
1 1 1 1  1 1  1 1  

corresponding to an indecomposable infinitedimensional Lie algebra, with non-zero 
commutators 

[LIO, LIO1, = Loo [ L m  L111, = Lo1 [Ll l ,  LI IL = Loo. (8.7) 

The algebra Ai1) admits a different Zz x &-grading: 

with n as in (5.12). In this case there are six non-trivial contractions specified by the 
matrices E in (5.13). 

Erample 3. 
algebra osp(2,l)  of (6.14) and (6.15) into a Z2 x Z2-grading: 

In an analogous way we can combine the two Z,-gradings of the super- 

L 0 1 = { ( i  1 /)>(l i ) ]  
L l o = { ( ;  1 1 ) . ( l  1) }  

L l l  = { ( :  . -1 : . 1 ) , ( :  -1 . : ;)] . 
with -," r.. 2nd -,, T.  .. t h e  ".._ odd -_- a w h w " s  ~ " ~ " ~ - " ~ ~ ,  and ifi (5.9). Combining 5 wit,h the 16 
entries of table 1, we get in all.but two cases a non-trivial contraction of osp(2,l) .  All 
14 of them different, 6 being discrete. They are listed in (5.10) and (5.11). Combining 
IC with the entries in table 2, we get another 21 contractions of (8.9). 

Ezample 4. The Zz x .%-grading splits A, into three subspaces L,, L,, L, generated 
by the Pauli matrices. The grading structure and contractions are given in (5.12) and 
(5.13). The three subspaces are conjugate under the action of the SL(2,C)  group, 
therefore the three contractions i n  each row of (5.13) give isomorphic algebras. More- 
over, the contracted algebras turn out to be isomorphic to the continuous linuts of the 
Z2- and Z3-gradings of A , .  The correspondences are easily established, for example, 
by considering the equality of dimensions of the derived algebras of the contractions. 
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